Nimrod Kor
The Limits of Prompting: ArchitectingTrustworthy Coding Agents
#1about 2 minutes
Prototyping a basic AI code review agent
A simple prototype using a GitHub webhook and a single LLM call reveals the potential for understanding code semantics beyond static analysis.
#2about 2 minutes
Iteratively improving prompts to handle edge cases
Simple prompts fail to consider developer comments or model knowledge cutoffs, requiring more detailed instructions to improve accuracy.
#3about 5 minutes
Establishing a robust benchmarking process for agents
A reliable benchmarking pipeline uses a large dataset, concurrent execution, and an LLM-as-a-judge (LLJ) to measure and track performance improvements.
#4about 2 minutes
Decomposing large tasks into specialized agents
To combat inconsistency and hallucinations, a single large task like code review is broken down into multiple smaller, specialized agents.
#5about 6 minutes
Leveraging codebase context for deeper insights
Moving beyond prompts, providing codebase context via vector similarity (RAG) and module dependency graphs (AST) unlocks high-quality, human-like feedback.
#6about 3 minutes
Introducing Awesome Reviewers for community standards
Awesome Reviewers is a collection of prompts derived from open-source projects that can be used to enforce team-specific coding standards.
#7about 1 minute
Key takeaways for building reliable LLM agents
The path to a reliable agent involves starting with a proof-of-concept, benchmarking rigorously, using prompt engineering for quick fixes, and investing in deep context.
Related jobs
Jobs that call for the skills explored in this talk.
Wilken GmbH
Ulm, Germany
Senior
Kubernetes
AI Frameworks
+3
Picnic Technologies B.V.
Amsterdam, Netherlands
Intermediate
Senior
Python
Structured Query Language (SQL)
+1
Matching moments
07:39 MIN
Prompt injection as an unsolved AI security problem
AI in the Open and in Browsers - Tarek Ziadé
06:28 MIN
Using AI agents to modernize legacy COBOL systems
Devs vs. Marketers, COBOL and Copilot, Make Live Coding Easy and more - The Best of LIVE 2025 - Part 3
04:59 MIN
Unlocking LLM potential with creative prompting techniques
WeAreDevelopers LIVE – Frontend Inspirations, Web Standards and more
05:03 MIN
Building and iterating on an LLM-powered product
Slopquatting, API Keys, Fun with Fonts, Recruiters vs AI and more - The Best of LIVE 2025 - Part 2
03:58 MIN
Making accessibility tooling actionable and encouraging
Developer Time Is Valuable - Use the Right Tools - Kilian Valkhof
06:33 MIN
The security challenges of building AI browser agents
AI in the Open and in Browsers - Tarek Ziadé
02:49 MIN
Using AI to overcome challenges in systems programming
AI in the Open and in Browsers - Tarek Ziadé
05:55 MIN
The security risks of AI-generated code and slopsquatting
Slopquatting, API Keys, Fun with Fonts, Recruiters vs AI and more - The Best of LIVE 2025 - Part 2
Featured Partners
Related Videos
How we built an AI-powered code reviewer in 80 hours
Yan Cui
Three years of putting LLMs into Software - Lessons learned
Simon A.T. Jiménez
The AI Agent Path to Prod: Building for Reliability
Max Tkacz
Prompt Engineering - an Art, a Science, or your next Job Title?
Maxim Salnikov
Bringing the power of AI to your application.
Krzysztof Cieślak
Beyond Prompting: Building Scalable AI with Multi-Agent Systems and MCP
Viktoria Semaan
AI: Superhero or Supervillain? How and Why with Scott Hanselman
Scott Hanselman
Using LLMs in your Product
Daniel Töws
Related Articles
View all articles



From learning to earning
Jobs that call for the skills explored in this talk.

Forschungszentrum Jülich GmbH
Jülich, Germany
Intermediate
Senior
Linux
Docker
AI Frameworks
Machine Learning

Xablu
Hengelo, Netherlands
Intermediate
.NET
Python
PyTorch
Blockchain
TensorFlow
+3

Starion Group
Municipality of Madrid, Spain
API
CSS
Python
Docker
Machine Learning
+1

Robert Ragge GmbH
Senior
API
Python
Terraform
Kubernetes
A/B testing
+3

Mindrift
Remote
£41K
Junior
JSON
Python
Data analysis
+1


Hyperproof
Municipality of Madrid, Spain
€45K
Machine Learning

autonomous-teaming
München, Germany
Remote
API
React
Python
TypeScript
